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Definite Integration and Areas

0 1

23
2  xy

It can be used to find an area bounded, in part, by 
a curve

e.g.                  

1

0

2
23 dxx gives the area shaded on the graph

The limits of integration . . .

Definite integration results in a value.

Areas



Definite Integration and Areas

. . . give the boundaries of 
the area.

The limits of integration . . . 

0 1

23
2  xy

It can be used to find an area bounded, in part, by 
a curve

Definite integration results in a value.

Areas

x = 0 is the lower limit
( the left hand boundary )

x = 1 is the upper limit
(the right hand boundary )

  dxx 23
2

0

1

e.g.                 gives the area shaded on the graph
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0 1

23
2  xy

Finding an area

the shaded area equals 3

The units are usually unknown in this type of question
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Definite Integration and Areas

SUMMARY

• the curve              ),(xfy 

• the lines x = a and x = b

• the x-axis and 

PROVIDED that 
the curve lies on, or above, the x-axis between 

the values x = a and x = b

 The definite integral              or           

gives the area between 


b

a

dxxf )( 
b

a

dxy
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xxy 2
2 xxy 2

2 

Finding an area






0

1

2
2 dxxxA area

A B

 

1

0

2
2 dxxxB area

For parts of the curve below 
the x-axis, the definite 
integral is negative, so
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xxy 2
2 
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Finding an area
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xxy 2
2 

B

Finding an area
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Definite Integration and Areas

SUMMARY  

 An area is always positive.

 The definite integral is positive for areas above 
the x-axis but negative for areas below the 
axis.

 To find an area, we need to know whether 
the curve crosses the x-axis between the 
boundaries.

• For areas above the axis, the definite integral 
gives the area.

• For areas below the axis, we need to change the 
sign of the definite integral to find the area.
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Exercise  

Find the areas described in each question.
1.  The area between the curve          the x-axis 

and the lines x = 1 and x = 3. 

2
xy 

2.  The area between the curve                    , 
the x-axis and the x = 2 and x = 3. 

)3)(1(  xxy
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B

)3)(1(  xxy

A

2
xy 

1.  

2.  

Solutions:
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Extension

The area bounded by a curve, the y-axis and the 
lines y = c and y = d is found by switching the xs and 
ys in the formula.

So, becomes
b

a

dxy

 

d

c

dyx


d

c

dyx

e.g. To find the area between the curve           , 
the y-axis and the lines y = 1 and y = 2, we need 

xy 

3

7


2

1

2
dyy
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2
2 xxy 

xy 

Harder Areas

e.g.1  Find the coordinates of the points of 
intersection of the curve and line shown.  Find 
the area enclosed by the curve and line.

2
2 xxx 

Solution: The points of intersection are given by

0
2  xx 0)1(  xx

10  xx or    



Definite Integration and Areas

2
2 xxy 

xy 
00  yx   

xy Substitute in 

11  yx   

The area required is the 
area under the curve 
between 0 and 1 . . . 

. . . minus the area under the line (a triangle )
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Method 1

0 1
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2
2 xxy 

xy 
Instead of finding the 2 
areas and then subtracting, 
we can subtract the 
functions before doing the 
integration.
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Method 2
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6y

2
2  xy

Exercise  

 Find the points of intersection of the following 
curves and lines.  Show the graphs in a sketch, 
shade the region bounded by the graphs and find 
its area. 

2
2  xy 6y(a)              ; (b)              ; 2 xy

2
4 xy 

Solution:
(a) 62

2 x

4
2 x

2x

(  y = 6 for both points )
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6y

2
2  xy

Shaded area = area of rectangle – area under curve
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2 xy

2
4 xy 

,02  yx

Area of the triangle 

 2x 1xor

Substitute in             : 2 xy

31  yx

Area under the curve
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2
1 

(b)              ; 2 xy
2

4 xy 

02
2  xx

0)1)(2(  xx

Shaded area = area under curve – area of triangle
2
9

2
9

2
42 xx 
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3
xy 

The symmetry of the curve 
means that the integral 
from 1 to +1 is 0.

If a curve crosses the x-axis between the limits of 
integration, part of the area will be above the axis 
and part below.

3
xy e.g.            between 1 and +1

To find the area, we could 
integrate from 0 to 1 and, 
because of the symmetry, 
double the answer.

For a curve which wasn’t symmetrical, we could 
find the 2 areas separately and then add.
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You don’t need to know how the formula for area 
using integration was arrived at, but you do need to 
know the general ideas.

The area under the curve is split into strips.

The area of each strip is then approximated by 2
rectangles, one above and one below the curve as 
shown.

The exact area of the strip under the curve lies 
between the area of the 2 rectangles.
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Using 10 rectangles 
below and 10 above to 
estimate an area below 
a curve, we have . . .

Greater accuracy would 
be given with 20 
rectangles below and 
above . . .
For an exact answer we 
let the number of 
rectangles approach 
infinity.  

The exact area is “squashed” between 2 
values which approach each other.  These 
values become the definite integral.
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The following slides contain repeats of 
information on earlier slides, shown without 
colour, so that they can be printed and 
photocopied.

For most purposes the slides can be printed 
as “Handouts” with up to 6 slides per sheet.
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23
2  xy

. . . give the boundaries of 
the area.

It can be used to find an area bounded, in part, by 
a curve

Definite integration results in a value.

Areas

The limits of integration . . . 

x = 0 is the lower limit
( the left hand boundary )

x = 1 is the upper limit
(the right hand boundary )

  dxx 23
2
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1

e.g.                 gives the area shaded on the graph



Definite Integration and Areas

SUMMARY

• the curve              ),(xfy 

• the lines x = a and x = b

• the x-axis and 

PROVIDED that 
the curve lies on, or above, the x-axis between 

the values x = a and x = b

 The definite integral              or           

gives the area between 


b

a

dxxf )( 
b

a

dxy
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xxy 2
2 xxy 2

2 

Finding an area






0

1

2
2 dxxxA area

A B

 

1

0

2
2 dxxxB area

For parts of the curve below 
the x-axis, the definite 
integral is negative, so
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SUMMARY  

 An area is always positive.

 The definite integral is positive for areas above 
the x-axis but negative for areas below the 
axis.

 To find an area, we need to know whether 
the curve crosses the x-axis between the 
boundaries.

• For areas above the axis, the definite integral 
gives the area.

• For areas below the axis, we need to change the 
sign of the definite integral to find the area.
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Harder Areas

e.g.1  Find the coordinates of the points of 
intersection of the curve and line shown.  Find 
the area enclosed by the curve and line.

2
2 xxx 

Solution: The points of intersection are given by

0
2  xx 0)1(  xx

10  xx or    

2
2 xxy 

xy 
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2
2 xxy 

xy 
00  yx   

xy Substitute in 

11  yx   

The area required is the 
area under the curve 
between 0 and 1 . . . 

. . . minus the area under the line (a triangle )
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